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• For each resource 𝑒 ∈ 𝐸 there is a latency function 𝑓𝑒 ∶ ℕ → ℝ+

– 𝑓𝑒(𝑥) is non-decreasing in 𝑥 and represents the latency 
experienced by each of the 𝑥 players using resource 𝑒

• Each player 𝑖 has a set of strategies 𝑆𝑖 ⊆ 2𝐸, each of which is a subset 
of recourses that the player can use

• A state 𝒔 = (𝑠1, … , 𝑠𝑛) is an instance of the game, where each player 
has chosen a particular strategy 𝑠𝑖 ∈ 𝑆𝑖
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General definition

• The load 𝑛𝑒(𝒔) of a resource 𝑒 ∈ 𝐸 in a state 𝒔 is equal to the number 
of players using 𝑒: 

• The cost of player 𝑖 in state 𝒔 is equal to the total latency that she 
experiences from all resources that she uses:

𝑛𝑒 𝒔 = |{𝑖 ∈ 𝑁: 𝑒 ∈ 𝑠𝑖}|

cost𝑖(𝒔) = ෍

𝑒∈𝑠𝑖

𝑓𝑒(𝑛𝑒(𝒔))
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Network congestion games

• A network defined by a directed graph 𝐺

• Player 𝑖 wants to transmit data from a source node 𝑧𝑖 to a sink node 𝑡𝑖

• Each directed edge of 𝐺 corresponds to a resource and has a latency 
function representing the cost of using it in terms of the number of 
players that select it

• The set of strategies 𝑆𝑖 of player 𝑖 consists of all paths from 𝑧𝑖 to 𝑡𝑖

• If all players have the same source node 𝑧 and the same sink node 𝑡, 
then they all have the same set of possible strategies and the game is 
symmetric
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cost2 𝒔
= 1 + 2
+1/2 + 2/2
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Load balancing games

• A set of machines

• The players have jobs that require the same processing time (weight)

• Each player aims to assign her job to a machine so that to minimize 
the waiting time

• The machines can process in parallel all jobs that have been assigned 
to them, but have different processing speeds

• If 𝑥 players choose the same machine of speed 𝑣 then the cost of each 
such player is equal to 𝑓𝑣 𝑥 = 𝑥/𝑣
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• Two machines 𝑀1 with speed 𝑣1 = 1, and 𝑀2 with speed 𝑣2 = 2

• Two players, both with jobs that require 1 hour of processing

• If both select 𝑀1 then each of them has a cost of 2

• If both select 𝑀2 then each of them has a cost of 1

• If one selects 𝑀1 and one selects 𝑀2 then the first has cost 1 and the 
latter has cost 1/2

• Every state besides (𝑀1, 𝑀1) is an equilibrium

𝟐, 𝟐 𝟏, 𝟏/𝟐

𝟏/𝟐, 𝟏 𝟏, 𝟏

𝑴𝟏 𝑴𝟐

𝑴𝟏

𝑴𝟐



Load balancing games: example

• What if 𝑀1 has speed 𝑣1 = 1/2 ?



Load balancing games: example

• What if 𝑀1 has speed 𝑣1 = 1/2 ?

• It is a dominant strategy for every player to select 𝑀2

𝟒, 𝟒 𝟐, 𝟏/𝟐

𝟏/𝟐, 𝟐 𝟏, 𝟏

𝑴𝟏 𝑴𝟐
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Potential functions

• Let Φ be a function which takes as input a state of a game and returns 
a real value 

• Φ is a potential function if for every two states 𝒔𝟏 and 𝒔𝟐 that differ  
on the strategy of a single player 𝑖, the quantities Φ(𝒔𝟏) − Φ(𝒔𝟐) and 
cost𝑖(𝒔𝟏) − cost𝑖(𝒔𝟐) have the same sign: 

Φ 𝒔𝟏 −Φ 𝒔𝟐 cost𝑖 𝒔𝟏 − cost𝑖 𝒔𝟐 > 0
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Potential functions: example

50

35

25

40 15

9

30 1060



• Let’s change the dynamics 
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• This is not a valid potential; 
can we fix this?

• Change 20 to 9
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• Let’s change the dynamics 
so that there is no equilibrium

• This is not a valid potential; 
can we fix this?

• Change 20 to 9

• Change 15 to 8

• Change 10 to 7
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• Let’s change the dynamics 
so that there is no equilibrium

• This is not a valid potential; 
can we fix this?

• Change 20 to 9

• Change 15 to 8

• Change 10 to 7

• The cycle between these 
nodes will not allow us to find 
correct values for the function to be a potential
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• Let’s change the dynamics 
so that there is no equilibrium

• This is not a valid potential; 
can we fix this?

• Change 20 to 9

• Change 15 to 8

• Change 10 to 7

• The cycle between these 
nodes will not allow us to find 
correct values for the function to be a potential

• We must have 𝑥 > 𝑦 > 𝑧 > 𝑥, a contradiction

Potential functions: example
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• Let Φ be the potential function of the game

• Since the game has a finite number of states, there exists a state 𝒔 for 
which Φ is minimized

• Let 𝒔′ be any other state of the game that differs from 𝒔 only in the 
strategy of a single player 𝑖

• We have that Φ 𝒔′ ≥ Φ(𝒔)

• By the definition of the potential we obtain cost𝑖 𝒔′ ≥ cost𝑖(𝒔)

• Since this holds for every player, 𝒔 must be an equilibrium ▢

Existence of equilibrium

Theorem
If a finite game admits a potential function then it has at least one 
pure equilibrium



• For the class of congestion games, Rosenthal [1973] defined the 
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• Recall:

– 𝑛𝑒(𝒔) is the load of resource 𝑒 in state 𝒔 (number of players using 𝑒)

– 𝑓𝑒(𝑥) is the latency that 𝑥 players experience by using 𝑒
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• For the class of congestion games, Rosenthal [1973] defined the 
function:

• Recall:

– 𝑛𝑒(𝒔) is the load of resource 𝑒 in state 𝒔 (number of players using 𝑒)

– 𝑓𝑒(𝑥) is the latency that 𝑥 players experience by using 𝑒

• We will show that Rosenthal’s function is a potential function for 
congestion games ⇨ Every congestion game has at least one pure 
equilibrium

Rosenthal’s function
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• Let 𝒔 and 𝒔′ be two states of the game that differ only on the strategy 
of a single player 𝑖

• We want to show that the quantities Φ(𝒔) − Φ(𝒔′) and cost𝑖(𝒔) −
cost𝑖(𝒔′) have the same sign

• Actually we will prove that these two quantities are equal, which 
means that Rosenthal’s function is an exact potential

• 𝑠𝑖 is the strategy of player 𝑖 in state 𝒔

• 𝑠𝑖
′ is the strategy of player 𝑖 in state 𝒔′

Rosenthal’s function

Theorem
Rosenthal’s function is a potential function for every congestion 
game 
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• We partition the set of all resources 𝐸 into different subsets:

▪ 𝑒 ∉ 𝑠𝑖 ∪ 𝑠𝑖
′

▪ 𝑒 ∈ 𝑠𝑖 ∩ 𝑠𝑖
′

▪ 𝑒 ∈ 𝑠𝑖 ∖ 𝑠𝑖
′

▪ 𝑒 ∈ 𝑠𝑖
′ ∖ 𝑠𝑖
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• 𝑒 ∉ 𝑠𝑖 ∪ 𝑠𝑖
′

▪ player 𝑖 does not use 𝑒 in any of the two states 

▪ 𝑛𝑒(𝒔) = 𝑛𝑒(𝒔
′)

▪ σ𝑥=1
𝑛𝑒 𝒔

𝑓𝑒 𝑥 − σ
𝑥=1

𝑛𝑒 𝒔′
𝑓𝑒 𝑥 = 0
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• 𝑒 ∉ 𝑠𝑖 ∪ 𝑠𝑖
′

▪ player 𝑖 does not use 𝑒 in any of the two states 

▪ 𝑛𝑒(𝒔) = 𝑛𝑒(𝒔
′)

▪ σ𝑥=1
𝑛𝑒 𝒔

𝑓𝑒 𝑥 − σ
𝑥=1

𝑛𝑒 𝒔′
𝑓𝑒 𝑥 = 0

• 𝑒 ∈ 𝑠𝑖 ∩ 𝑠𝑖
′

▪ player 𝑖 uses 𝑒 in both states 

▪ 𝑛𝑒(𝒔) = 𝑛𝑒(𝒔′)

▪ σ𝑥=1
𝑛𝑒 𝒔

𝑓𝑒 𝑥 − σ
𝑥=1

𝑛𝑒 𝒔′
𝑓𝑒 𝑥 = 0 = 𝑓𝑒 𝑛𝑒 𝒔 − 𝑓𝑒 𝑛𝑒 𝒔′

Rosenthal’s function
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▪ player 𝑖 uses 𝑒 only in state 𝒔
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𝑓𝑒 𝑥 − σ
𝑥=1

𝑛𝑒 𝒔′
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• Potential functions: for every pair of states that differ on the strategy 
of a single player, the difference in the value of the potential and the 
difference of the cost of this player have the same sign

• If a game admits a potential function, it has a pure equilibrium

• Rosenthal’s function is a potential function for congestion games
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